Modular control system Decontic k

Time module Start-up delay 2-fold

ZT 373a-E

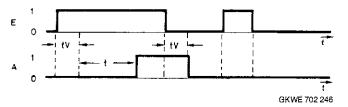
Description

The time module possesses two identical function units. The following description is given for one function unit; the other operates accordingly.

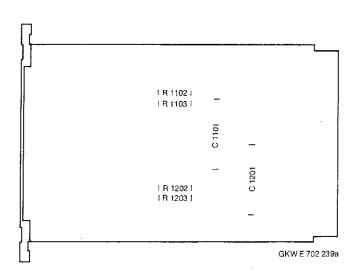
The module is used as a start-up delay.

The module is suitable for delay times from 0.1 s to 960 s.

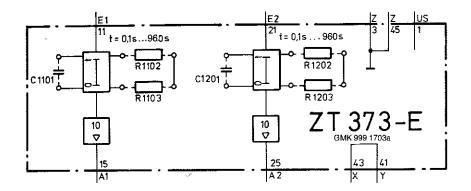
The time interval is adjusted by resistors R 1102, R 1103 and capacitor C 1101.


The timing circuit operates according to the counting principle. A binary counter counts the number of pulses delivered by an oscillator. The pulses to be counted are fixed. However the pulse length is nominated by resistors R 1102, R 1103 and capacitor C 1101. The timing circuit is started by applying a 1-signal at input **E 1**. The desired time interval expires when the counter has counted up the preset number of pulses and then a 1-signal appears at output **A 1**.

Mechanical construction


Print size 3.5 E; 1 T Edge connector 1 Weight ca. 0.15 kg The input **E 1** has a response delay of typically 6 ms as a precaution against disturbance pulses. The module is supplied calibrated for a delay time of 10 s which corresponds to a basic component selection of R 1102 = 100 k Ω and C 1101 = 0.68 μ F.

Connections **X** and **Y** can be used to provide supervision over missing p.c.b.s. in the rack. The module is connection compatible with the Universal time module (ZT 372).


Below a complete timing diagram is given:

The response delay tV = typically 6 ms can be ignored in comparison to the operating time t.

Function diagram

Technical data

In addition to system data the following values also apply:

Power supply

Operating supply voltage

 $US = 24 \quad V d.c.$

Current consumption

at maximum output load

Is = 10 mA + output current at outputs A

ls = 42 mA

Power dissipation

P = 0,2...0,4W

After the operating supply voltage is switched on, the module indicates the following states:

0-signal at input:

The timing circuit remains quiescent, a 0-signal appears at output A.

1-signal at input:

The timing starts operating.

Internal function inhibit after switch-on of supply

voltage

≈ 0,1 s

Recovery time for internal inhibit after failure of operating supply voltage. By failure of the operating voltage only effectively, when the time of failure

Input values

E 1, E2

1 NL

1.5 s

Output values

Load capability

A 1, A 2 X, Y — Connections for supervision over missing 10 NL

p.c.b.s.

100 mA

Time interval adjustment

Minimum adjustable time Maximum adjustable time

Interval adjustment by resistors and capacitors

$$t = 140 \quad s \cdot \frac{R}{M\Omega} \cdot \frac{C}{\mu F}$$

	Resistors	Capacitor
Function unit 1	R 1102 + R 1103 = R	C 1101
Function unit 2	R 1202 + R 1203 = R	C 1201
Permissible values	$R = 100 k\Omega \dots 1 M\Omega$	$C = 6.8 \text{nF} \dots 6.8 \mu \text{F}$

Recovery time

By calculation of times with the indicated formula should be consider a deviation of \pm 27% in virtue of the components manufacturing tolerance.

Tolerance of adjusted time intervals

Equipped with R = ± 2 % acc. XN 400 002 and C with \pm 10 % acc. XN 400 005:

Temperature influence Repeatability

In order to improve the accuracy or to increase the time interval, the following components can be used:

Resistor

 \pm 1.00 % acc. XN 400 324

Capacitor ± 1.25 % acc. XN 400 662

± 2.00 % acc. XN 400 015 \pm 20.00 % acc. XN 400 009

Electrolytic capacitors may not be used.